
Scaling model of annihilation-diffusion kinetics for charged particles with long-range interactions

Sergei F. Burlatsky,1 Valeriy V. Ginzburg,2 and Noel A. Clark2
1Department of Chemistry, University of Washington, Seattle, Washington 98195-1700

2Department of Physics, University of Colorado, Boulder, Colorado 80309-0390
~Received 8 May 1996!

We propose a general scaling model for the diffusion-annihilation reactionA11A2→0” with long-range
power-law interactions. The presented scaling arguments lead to the finding of three different regimes, depend-
ing on the space dimensionalityd and the long-range force power exponentn. The obtained kinetic phase
diagram agrees well with existing simulation data and approximate theoretical results.
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The problem of annihilation-diffusion kinetics has gener-
ated significant interest in recent years, since it was shown
@1–6# that in a bimolecular reactionA1B→0” , long-
wavelength density fluctuations cause significant slowing
down of the particle density decay. While the ordinary
kinetic-rate approach suggests that in a bimolecular reaction,
particle densityr always decays ast21, the account of fluc-
tuations leads to a power-law decay,

r}t2n, ~1!

wheren<1; when no long-range interaction exists between
particles,n5d/4 for d,4 andn51 whend>4, whered is
space dimensionality@1–3#. Thus, 4 is a critical dimension
for the bimolecular reaction, and below it, long-wavelength
fluctuations determine annihilation kinetics entirely.

Even though the role of fluctuations in systems without
long-range interactions is well understood and confirmed by
numerical simulations@2–7#, the situation is far less clear
when long-range forces are present. Meanwhile, the latter
problem is especially important in different physical applica-
tions, e.g., in condensed matter physics, when one replaces
particlesA andB with dislocations or vortices and analyzes
their annihilation upon quench from a high-temperature to a
low-temperature phase. These considerations prompted sev-
eral numerical studies of the problem of annihilation kinetics
in Coulombic systems in two dimensions@8–10#. While it
was shown that power-law decay~1! is satisfied at a late
stage of the annihilation process, and that exponentn is
rather close to 1, its value has not been determined fully or
calculated rigorously. In our recent work proposed to explain
this unusual result@8,11#, based on an assumption that the
system first relaxes charge density fluctuations towards sta-
tistical equilibrium and only then proceeds with annihilation.
However, other theories@12,13#, predictedn51 for Coulom-
bic systems, if initial conditions remain random when anni-
hilation starts.

Quite recently, we proposed a self-consistent description
of the annihilation-diffusion kinetics@14#, that allows us to
take into account different initial conditions. This theory ne-
glects fluctuations of the total particle density, but, unlike a
mean-field theory, takes into account the fluctuations of the
charge density. Such an approximation enables one to solve
equations of evolution and determine asymptotics for differ-

ent scaling regimes. In the case of Gaussian random initial
charge density, a kinetic phase diagram was calculated and
final ~large-t! asymptotics were as follows:

If n>11d/2 andd,4 ~fluctuation-dominated region!,

r}~Dt !2n, n5d/4; ~2!

if n,11d/2 andn>d21 ~intermediate region!,

r}~Qt!2n, n5
d

22d12n
; ~3!

and if d>4 ~mean-field region!,

r}~Kt !2n, n51, ~4!

with D, Q, andK being diffusion, electrostatic, and annihi-
lation constants. Equations~2!–~4! do not exhaust all scaling
solutions of self-consistent equations of evolution; these are
only the large-t asymptotics. Equations~2! and ~4! are very
well known, while the intermediate solution~3! was pro-
posed in the scaling theory of Ispolatov and Krapivsky@13#
~but the region of its applicability was determined in a dif-
ferent manner!.

In this paper, we propose a simple scaling theory to derive
relations~2!–~4!. Such a theory would not only support the
validity of the self-consistent approach of Ref.@14#, but also
would give an additional insight into the role of initial con-
ditions in determining late stage asymptotics for
annihilation-diffusion problems.

Let us start by writing a Langevin equation for thei th
particle, assuming that inertia forces are negligible in com-
parison with viscous drag force:

b
dr i
dt

5(
j

Qqiqj
ur i2r j un11 ~r i2r j !1fri , ~5!

where b is a ‘‘friction coefficient’’ and fri is a random
Brownian force acting on thei th particle. We will use the
Langevin equation to characterize a slow relaxation of an
initial particle density fluctuation and thus estimate the anni-
hilation rate.

Let us select a region with characteristic sizeL. Because
of the assumption about randomness of the initial particle
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distribution, dN}AN, whereN is the number of particles
inside the volumeV5Ld. The mean-square normalized den-
sity fluctuation in this volume is

dr

r0
}L2d/2. ~6!

As is traditionally done in scaling theories of annihilation,
we assume that excess particles start annihilating only when
they travel the distance on the order ofL. In this case, as-
suming that diffusion is irrelevant, we rewrite the Langevin
equation, replacing all occurrences ofr with L,

b
dL

dt
5

dQ~L !

Ln
, ~7!

where total charge fluctuation in the regiondQ(L)}Ld/2,
again due to the Gaussian initial conditions. From this fol-
lows

Ln112d/2}t, ~8!

or

L}tL
1/~n112d/2! , ~9!

where tL represents the time necessary for an average par-
ticle to travel the distanceL ~assuming it does not annihilate
during this time!. At the time tL , the majority of particles
that originally were in volumeV have annihilated, and only
those excess particles still remained, so the density is

r~ tL!

r0
'

dN

N
}L2d/2}tL

2d/@2~n112d/2!# , ~10!

or, omitting the index ‘‘L,’’

r}t2d/~2n122d!. ~11!

In order for scaling laws~8! and ~11! to be valid, it is

necessary that~i! drift occurs slower than annihilation, and
~ii ! drift occurs faster than thermal~Brownian! diffusion.
These conditions imply that

n112d/2<2, ~12!

d

2n122d
<1, ~13!

which is equivalent tod21<n<11d/2.
If condition ~12! is not satisfied, i.e.,n.11d/2, deter-

ministic drift is irrelevant, and everything is determined by
the competition of diffusion and annihilation. In this case, as
expected,

L}t1/2, ~14!

r}t2d/4, d<4, ~15!

r}t21, d.4. ~16!

Thus, using simple scaling approximations, we confirmed
validity of the self-consistent approximation for the
annihilation-diffusion system with long-range interactions.
Scaling exponents obtained in the large-t limit agree well
with known theoretical models and numerical simulations.
We also showed that the initial density distribution plays an
important role in determining large-t scaling behavior at
least for strongly interacting systems such as Coulombic, and
we made estimates of this behavior when the initial distribu-
tion was Gaussian.

In the future, more theoretical and numerical effort will be
required to explore in more detail the rich kinetic phase dia-
gram for systems with long-range interactions. While the use
of scaling arguments like the one proposed here cannot be
used for exact analysis of annihilation behavior, it can and
will complement other numerical and analytical methods in
elucidating main features and dependencies of annihilation
kinetics.
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